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We obtain an asymptotic formula describing the pointwise behavior of certain wavelet
series at a neighborhood of a point of divergence.  © 1997 Academic Press

1. INTRODUCTION

Information about the order of magnitude of the Fourier coefficients of
a function f is not sufficient for making conclusions about the size or
regularity of f. For example, in [3] it is shown how to obtain a continuous
function from an arbitrary square-integrable function by modifying slightly
the moduli of the Fourier coefficients of the latter and changing the phases
in an appropriate manner.

A common principle in the study of the local regularity of a function f
by means of its wavelet series expansion

f00 =3 ¢ (2x—k) (1)

is that it is enough to consider only those coefficients c;, such that
Y(2/x — k) is localized at the neighborhood in question. For example in
[2], Jaffard investigates the problem of characterizing local Holder con-
tinuity in terms of its wavelet coefficients, while in [4, p. 116], a necessary
condition for differentiability at a given point is presented in terms of the
decay of the periodic wavelet coefficients.

In this note, we shall investigate the pointwise behavior of certain “sub-
series” of (1), all of whose terms are localized at a given point x,, and such
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that the corresponding coefficients are relatively large. Our main results
yield wavelet series analogous to the classical formula

Z n—"cos nx ~x"~'I'(1 — p) sin( fr/2), x> +0

n=1

where 0 < < 1. See for example [6, p. 186]. Here, and in what follows,

will mean that A(x)(B(x))~'—1 as x - 0.
The following example is a consequence of Theorem 2 in Section 3. For
O0<a<l, let
F(x)=) j "2 —k;), xeR (2)

1

™8

J

Assuming that (0*)#0, we have
Fi(xo+0)~y(0%)loglog(|5] "), 0-0
while for 0 <a <1,
F(xo+0) = Cp(0%)(log(lo] ~')' 7% 00,

where C,=(1—a)"'(¢*/log2)' % and ¢*=limjn;'. In obtaining this
results, we have assumed that

[e’s}

(A) {k;} =, is any sequence of integers while {n;}  is an increasing
sequence of positive integers relatively dense in N in the sense that for some
MeN,

{41, [+ M} {ny,ny, ) #¢ (3)

for every integer />0,

(B) there exists x, € R for which the sequence
0,:=2"xy—k;,,  j=1,2,3,.,

converges to some real number 0* (one may take, for instance, x,=0 and
k;=0 for all j, so that 0* =0),
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(C) the function ¥: R - R has a bounded derivative and that for some
positive constants C, N,

[Y(x)] < C(1+[x|™) ! (4)
for all real x,
(D) the sequence {jn;"'} converges.

We remark that under condition (B) above, it can likely happen that the
wavelet series

Fx)= Y ep(2x—k) (5)

will be divergent at x =Xx, if the coefficients ¢;s do not tend to zero fast
enough.

It was shown in [ 5] that under conditions (A), (B), and (C), there exists
a constant K; < oo such that the function F defined in (5) satisfies

|F(xo +0)| < K, log(19] ~")

whenever 0 < [d| <1/2, provided that the sequence {c;} of coefficients is
convergent. If in addition (D) is satisfied, then

F(xy,+9)
X T0) S w(o* 6
I oeor )~ V) (6)
where
Jo=(log2)~" lim 2%
j— nj

2. THE MAIN ESTIMATE

If the sequence {c;} of coefficients tends to zero, (6) does not tell us
much about the pointwise asymptotic behavior of F(x) near x,. Our main
objective in this paper is to investigate the situation when this is the case.

THEOREM 1. Let {c;} j—1 be a sequence of non-negative real numbers
tending to zero such that Y c¢;= oo and suppose F is given as in (5) subject

to the conditions (A), (B), and (C). Define r: (—1, 1)\{0} = N by

r(0) :=min{reN:2" [J]| > 1}.
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Then

lim (f cj>l Flxo+6) = (0%). (7)

5—0\ T
We note that condition (A) implies that the function r =r(J) must satisfy
1<2m |9 <2 (8)
whenever 0 < [d]| < 1.
Proof of Theorem 1. We proceed as in [5] by decomposing the sum
defining F(x). Given 0 < |J]| <1,

F(xy+9)=y(0%) ri) c;+S(0) + R(9)
where .
()
S©0)= Y c[¥(0,+2"0) —y(0*)],

Jj=

RO =Y ¢p(0,+2"5)

J>r(d)
We claim that for some constant 4, independent of 4,

IR(3)| <4, sup ¢, 0<|d|<]1. (9)

Jj=r(o)
To this end, choose j,€N such that [0,]<2/~! whenever j>1. It
follows that

|Hj| <2j—r(()‘)—] <2nj7n,((s)71
whenever j—j, >r(J), so that for these values of
|0, +2"6| =2~ "o~

where we have used the first inequality in (8). Consequently,

Yo (410, +02vM) <2V Y eV =27

J>r(d) +Jjy J>r(3)+Jjj (10)

Now, we split the summation defining R(J) into two: one sum ranging over
all j with r(0)+1<j<r(d)+jy, and the other ranging over all j with
j>r(0)+j,. From (10) and (4), it follows that

IR < (o ]+ C2¥(1=27%)71) sup ¢,

Jj>r(0)
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where [/| denotes the maximum of |y(x)| as x ranges over R. This
completes the verification of (9).

On the other hand, an application of Mean Value Theorem immediately
yields

IS < '] - (51(9) + 55(9))

where
()
S.(0)= Z c; |0,— 0%
j=1
r(J)
0)=19| Z ;2.

j=1
Since 3’ ¢;= oo and |0,—0*| — 0, it follows that
r(0) —1
<Z c_,-> S,(0) -0, 0—0.
j=1

In view of this and (9), the proof of Theorem 1 will be complete once we
have shown that S,(J) is bounded. Indeed, it is true that

lim S,(6)=0.

50

This follows from Lemma 1 below and the simple fact that
o] <2M e

whenever 0 < |[d] < 1. Q.E.D.

LeEmMA 1. Given any increasing sequence { p,}]“: | of positive integers and
any sequence {a,} of positive numbers tending to zero,

r

lim 277 Y a,27=0.

Jj=1

The proof of this lemma is omitted.

3. THE CASE OF MONOTONE COEFFICIENTS

Assuming the convergence of the sequence { Jn; ~'} and the monotonicity
of the coefficients ¢, allows for a cleaner reformulatlon of (7).
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} 721 be a sequence of non-negative real numbers

THEOREM 2. Let {c;
tending monotically to zero such that 3} ¢;= oo and suppose F is given as in
D).

(5) subject to the conditions (A), (B), (C), and (
Define s: (—1, 1)\{0} - N by

5(6) :=[¢q*(log2)~'log(|6] "1,

where g* =1im;_, ., jn; ", and [x] denotes the greatest integer less than or

equal to x. Then
(11)

)

5(0) —1
<( c,»> F(xo+0)=y(0%).

lim
o—-0 =1 X
Proof of Theorem 2. In view of (7), it is sufficient to show that
s5(0) r(9)
0—0,

DI IN
1 j=1

j=

m(J) —1 M(5)
k=m(J)+1

which will follow if we can show that

k=1
for all integers

—1

where m(d) =min{r(d), s(6)} and M(J)=max{r(d), s(d)}
k—1>°

We observe that by condition (A), nen, ', <1+ Mn
k > 1. Combining this with the definition of r =r(J) given in the statement

of Theorem 1, one arrives at
L(o)<n, <(1+Mn; ') L(5)
with L(J) = (log 2) ~' log(|]| ~'). This, in conjunction with the hypothesis
lim rn' = ¢* shows that r(5) ~ ¢*L(J), from which follows

m(d) ~ M(5),  6—0.
¢;} implies

Finally, the monotonicity of the sequence {
M(0) 1 m(o)

1 z <
- - € < ——
M(S)—m(d) a7, m(d) 5
and therefore
m(d) —1 M)
<Z ck> Yo e <M@G)m(s) ' —=1-0
m(o) +1

1

This completes the proof of Theorem 2.
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