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We obtain an asymptotic formula describing the pointwise behavior of certain wavelet
series at a neighborhood of a point of divergence. � 1997 Academic Press

1. INTRODUCTION

Information about the order of magnitude of the Fourier coefficients of
a function f is not sufficient for making conclusions about the size or
regularity of f. For example, in [3] it is shown how to obtain a continuous
function from an arbitrary square-integrable function by modifying slightly
the moduli of the Fourier coefficients of the latter and changing the phases
in an appropriate manner.

A common principle in the study of the local regularity of a function f
by means of its wavelet series expansion

f (x)=:
j, k

cj , k�(2 jx&k) (1)

is that it is enough to consider only those coefficients cj, k such that
�(2 jx&k) is localized at the neighborhood in question. For example in
[2], Jaffard investigates the problem of characterizing local Ho� lder con-
tinuity in terms of its wavelet coefficients, while in [4, p. 116], a necessary
condition for differentiability at a given point is presented in terms of the
decay of the periodic wavelet coefficients.

In this note, we shall investigate the pointwise behavior of certain ``sub-
series'' of (1), all of whose terms are localized at a given point x0 , and such
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that the corresponding coefficients are relatively large. Our main results
yield wavelet series analogous to the classical formula

:
�

n=1

n&; cos nx&x;&11(1&;) sin(;?�2), x � +0

where 0<;<1. See for example [6, p. 186]. Here, and in what follows,

A(x)&B(x), x � 0

will mean that A(x)(B(x))&1 � 1 as x � 0.
The following example is a consequence of Theorem 2 in Section 3. For

0<:�1, let

F:(x)= :
�

j=1

j&: �(2njx&kj), x # R (2)

Assuming that �(%*){0, we have

F1(x0+$ )&�(%*) log log( |$|&1), $ � 0

while for 0<:<1,

F:(x0+$ )&C:�(%*)(log( |$ |&1))1&:, $ � 0,

where C:=(1&:)&1 (q*�log 2)1&:, and q*=lim jn&1
j . In obtaining this

results, we have assumed that

(A) [kj]�
j=1 is any sequence of integers while [nj]�

j=1 is an increasing
sequence of positive integers relatively dense in N in the sense that for some
M # N,

[l+1, ..., l+M] & [n1 , n2 , ...]{, (3)

for every integer l�0,

(B) there exists x0 # R for which the sequence

%j :=2njx0&kj , j=1, 2, 3, ...,

converges to some real number %* (one may take, for instance, x0=0 and
kj=0 for all j, so that %*=0),
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(C) the function �: R � R has a bounded derivative and that for some
positive constants C, N,

|�(x)|�C(1+|x|N)&1 (4)

for all real x,

(D) the sequence [ jn&1
j ] converges.

We remark that under condition (B) above, it can likely happen that the
wavelet series

F(x)= :
�

j=1

cj�(2njx&kj) (5)

will be divergent at x=x0 if the coefficients cj's do not tend to zero fast
enough.

It was shown in [5] that under conditions (A), (B), and (C), there exists
a constant K1<� such that the function F defined in (5) satisfies

|F(x0+$)|�K1 log( |$ |&1)

whenever 0<|$|<1�2, provided that the sequence [cj] of coefficients is
convergent. If in addition (D) is satisfied, then

lim
$ � 0

F(x0+$ )
log( |$ |&1)

=*0 �(%*) (6)

where

*0=(log 2)&1 lim
j � �

jcj

nj
.

2. THE MAIN ESTIMATE

If the sequence [cj] of coefficients tends to zero, (6) does not tell us
much about the pointwise asymptotic behavior of F(x) near x0 . Our main
objective in this paper is to investigate the situation when this is the case.

Theorem 1. Let [cj]�
j=1 be a sequence of non-negative real numbers

tending to zero such that � cj=� and suppose F is given as in (5) subject
to the conditions (A), (B), and (C). Define r: (&1, 1)"[0] � N by

r($) :=min[r # N : 2nr |$ |�1].
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Then

lim
$ � 0 \ :

r($)

j=1

cj+
&1

F(x0+$)=�(%*). (7)

We note that condition (A) implies that the function r=r($) must satisfy

1�2nr |$|�2M (8)

whenever 0<|$|<1.

Proof of Theorem 1. We proceed as in [5] by decomposing the sum
defining F(x). Given 0<|$|<1,

F(x0+$)=�(%*) :
r($)

j=1

cj+S($)+R($)

where

S($)= :
r($)

j=1

cj[�(%j+2nj$ )&�(%*)],

R($)= :
j>r($)

cj ,(%j+2nj$ )

We claim that for some constant A1 independent of $,

|R($)|�A1 sup
j�r($)

cj , 0<|$|<1. (9)

To this end, choose j0 # N such that |%j |�2 j0&1, whenever j�1. It
follows that

|%j |�2 j&r($)&1�2nj&nr ($)&1

whenever j&j0�r($), so that for these values of j,

|%j+2nj$|�2nj&nr ($)&1,

where we have used the first inequality in (8). Consequently,

:
j>r($)+j0

(1+|%j+$2nj |N)&1�2N :
j>r($)+j0

(2nr ($)&nj )N�2N(1&2&N)&1.

(10)

Now, we split the summation defining R($) into two: one sum ranging over
all j with r($)+1�j�r($)+j0 , and the other ranging over all j with
j>r($)+j0 . From (10) and (4), it follows that

|R($)|�( j0 &�&+C2N(1&2&N)&1) sup
j>r($)

cj ,
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where &�& denotes the maximum of |�(x)| as x ranges over R. This
completes the verification of (9).

On the other hand, an application of Mean Value Theorem immediately
yields

|S($)|�&�$& } (S1($)+S2($))

where

S1($)= :
r($)

j=1

cj |%j&%*|

S2($)=|$| :
r($)

j=1

cj2
nj .

Since � cj=� and |%j&%*| � 0, it follows that

\ :
r($)

j=1

cj+
&1

S1($) � 0, $ � 0.

In view of this and (9), the proof of Theorem 1 will be complete once we
have shown that S2($) is bounded. Indeed, it is true that

lim
$ � 0

S2($)=0.

This follows from Lemma 1 below and the simple fact that

|$|�2M&nr ($)

whenever 0<|$|<1. Q.E.D.

Lemma 1. Given any increasing sequence [ pj]�
j=1 of positive integers and

any sequence [aj] of positive numbers tending to zero,

lim
r � �

2&pr :
r

j=1

aj2
pj=0.

The proof of this lemma is omitted.

3. THE CASE OF MONOTONE COEFFICIENTS

Assuming the convergence of the sequence [ jn&1
j ] and the monotonicity

of the coefficients cj allows for a cleaner reformulation of (7).
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Theorem 2. Let [cj]�
j=1 be a sequence of non-negative real numbers

tending monotically to zero such that � cj=� and suppose F is given as in
(5) subject to the conditions (A), (B), (C), and (D).

Define s: (&1, 1)"[0] � N by

s($) :=[q*(log 2)&1 log( |$|&1)],

where q*=limj � � jn&1
j , and [x] denotes the greatest integer less than or

equal to x. Then

lim
$ � 0 \ :

s($)

j=1

cj+
&1

F(x0+$)=�(%*). (11)

Proof of Theorem 2. In view of (7), it is sufficient to show that

:
s($)

j=1

cj & :
r($)

j=1

cj , $ � 0,

which will follow if we can show that

\ :
m($)

k=1

ck+
&1

\ :
M($)

k=m($)+1

ck+� 0,

where m($)=min[r($), s($)] and M($)=max[r($), s($)].
We observe that by condition (A), nk n&1

k&1�1+Mn&1
k&1 , for all integers

k>1. Combining this with the definition of r=r($) given in the statement
of Theorem 1, one arrives at

L($)�nr�(1+Mn&1
r&1) L($)

with L($)=(log 2)&1 log( |$|&1). This, in conjunction with the hypothesis
lim rn&1

r =q* shows that r($)&q*L($), from which follows

m($)&M($), $ � 0.

Finally, the monotonicity of the sequence [cj] implies

1
M($)&m($)

:
M($)

m($)+1

ck�
1

m($)
:

m($)

1

ck

and therefore

\ :
m($)

1

ck+
&1

:
M($)

m($)+1

ck�M($) m($)&1&1 � 0.

This completes the proof of Theorem 2. Q.E.D.
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